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ABSTRACT

The investigation concerns the application of modular neural networks, working synergistically with
genetic search, to provide a powerful means of intelligently controlling heuristic mathematical algorithms
for large-scale vehicle routing and scheduling problems. The design lends itself naturally to parallel
computing on loosely coupled networks of computers, and to implementation on parallel architectures
such as MIMD machines.

Extensive developmental work, coding and computational testing was carried on generic vehicle routing
problems. The results are consistently superior to known alternatives, and provide strong motivation to
extend the approach into more complex problem domains and military applications. The basic approach
was also applied to routing problems with time constraints, a significant complication of considerable
practical importance. Results on this problem are also consistently good, and there is potential to further
investigate the use of the approach in this domain. Finally, very preliminary results are available for
applying the methodology to routing and mission planning for remote autonomous military vehicles, such
as Tomahawk cruise missiles or other smart weapons systems. Results are very encouraging, and could
be considerably matured during a Phase II project.

In summary, the high performance achieved suggests that multiparadigm approaches that utilize methods
from artificial intelligence in conjunction with powerful and proven methods from mathematical
combinatorial optimization can build upon the strengths of each constituent, and achieve performance
that none of the methods can obtain in isolation.

Keywords: Vehicle routing and scheduling, algorithms, heuristics, neural networks, genetic
algorithms, transportation



1.0 Introduction

Efficient routing and scheduling of vehicles is of fundamental importance to many organizations 0
in both the military and the private sector. Primary applications involve the transport of materials
and people. However, the mathematical and computational methods also apply to many other
problems, including routing message traffic in communication networks, scheduling processes on
machines, and to VLSI (Very Large Scale Integration) chip design. Considerable effort has been
devoted to developing models and algorithms for vehicle routing and scheduling problems.
Material that summarizes progress to date is available [Bodin, Golden, Assad and Ball, 1983;
Assad and Golden, 1988]. From a mathematical view, essentially all vehicle routing and
scheduling problems belong to the extremely difficult class of NP-complete problems [Fisher and
Jaikumar, 1981], meaning that primarily approximation (heuristic) algorithms can be applied to
problems large enough to be of much practical interest. In particular, most military applications
are amenable primarily to heuristic algorithms, although network optimization, linear
programming or other exact methods can and should play a role in some cases.

This investigation involves a multipardigm approach for solving routing and scheduling
problems. The paradigms include subsymbolic artificial intelligence methodologies (neural
networks and genetic search) as well as combinatorial optimization methods. In essence, the
approach starts by applying a modular neural network system to the problem. This system carries
out feature extraction and classification, and provides a set of parameters for a mathematical
model (heuristic optimizer) as its output. The appropriate mathematical model is run, generating
a feasible solution to the problem. In addition, a genetic search is conducted for improved
parameters, again with a mathematical model used for evaluation. The mathematical models are
time honored procedures for routing and scheduling that have traditionally been driven by 0
paramters chosen in simplistic and static ways. Through intelligent parameter setting, the
performance of these models is dramatically improved. The overall approach is outlined as
follows:

Step 1. Pre-process the data, representing it so that a neural network system can readily
extract salient features and use them to generate parameters for a mathematical model to use
in providing a solution to the problem.

Step 2. Apply the neural network system to the problem, producing a set or sets of the
parameters needed by the mathematical model.

Step 3. Treating a set of parameters as a populaton member, use paramater sets from the
neural network system as a portion of the initial population for the genetic search, creating
the remainder at random.

Step 4. Apply the genetic search technique, continuing until a prespecified number of
generations has been reached or until a convergence criterion is meL Each population
member is evaluated by using its parameter set to drive the the mathematical model.

Important characteristics of the approach are inherent adaptation to problem instance, and
dynamic adaptation to the structure of the emerging solution even as the procedure is running.
The computational results establish that in at least some problem classes, combining the
approaches has a synergistic effect, providing solutions uniformly superior to those obtainable by
alternative methods from the literature. The approach readily parallelizes and has considerable
potential for real-time dynamic vehicle routing, a problem area of enormous potential for cost-
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savings and performance enhancement.

Specific instantiations of the basic approach were developed and applied to several types of
problems, including: i) the generic vehicle routing problem (VRP), in which there is a fleet of
vehicles with capacities, and stops have demand levels for service, ii) an extension called the
vehicle routing problem with time windows (VRPTW), in which the stops have time windows
associated with them, and iii) an application to route and trajectory plannng for remote
autonomous military aircraft, such as a Navy Tomahawk cruise missile.

To designate specific instantiations of the overall methodology, we use the notation NGO (for
Neural network, Genetic algorithm, Optimizer) followed by the notation for the problem
addressed. For example, NGO-VRP refers to the hybrid algorithm for specifically solving the
VRP.

The computational results are of high significance. For the VRP, a problem that has received
considerable attention in the literature, the new NGO-VRP methodology generates better
solutions than all of the applicable competing methods on every test problems that we evaluated.
Details are provided in Section 2. For the VRPTW, the neural network step will be implemented
in Phase H of the research. However, we did employ a genetic search and mathematical model
from a random start, and achieved very promising results for this extremely difficult class of
problems. Results are described in Section 3. Finally, prototype work was carried out for routing
of autonomous military aircraft, with data supplied by the Naval Surface Warfare Center
(NSWC) for a Tomahawk cruise missile. Although the missile study is also beirg carried out
under NSWC sponsorship, the basic methodologies of this DARPA investigation are applicable
to the problem (and other smart weaponry problems), and clearly illustrate the promise of the new
methods in problems of substantial importance in the military as well as the private sector.
Section 4 describes the status of the missile routing study. Finally, Section 5 describes future
research directions.

We emphasize that the overall approach has little in common with the many reported studies in
which subsymbolic Al techniques, such as neural networks, genetic algorithms or simulated
annealing are used to directly generate solutions to the traveling salesman problem [Hopfield and
Tank, 1986, Liepins and Hilliard, 1989; Kirkpatrick, 1986; Greffenstette, 1988]. Rather, we use
neural nets and genetic search as adaptive controllers that intelligently select and steer
mathematical heuristics that generate the actual solutions. In this way, the state-of-the-art in
combinatorial optimization is brought to bear upon the problems as well as the Al techniques.

2. The NGO-VRP Solver

The NGO-VRP system improves the ability of heuristic procedures to design routing plans, by
"intelligently" setting their parameters. The overall system starts with problem data consisting of
stop-point locations, depot location, number of vehicles and their capacities. A structural
description of each of the functional components is described in this section.

When a given set of model parameters has been set by either the initial neural network system or
by the genetic search, we use a "cluster first route second" approach to fitness evaluation for the
VRP. There are two fundamental components of this approach. First, the clusters (i.e.,
assignments of stops to vehicles) must be determined by some method. Second, the stop locations
must be efficiently sequenced. The overall objective is to find the order in which the stops are
visited so that the total distance traveled by all vehicles is minimized. We experimented with four
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mathematical methods of determining the clusters. The first two methods, Fast Assignment
Approaches FAAI and FAA2, are new and relatively fast heuristics. The third method, FGAA, is
a modified version of the generalized assignment method of Fisher and Jaikumar (1981). The
fourth method, COMBO, is a combination of the other 3 in a multiple sharing scheme.
XCHANGE is a simple postprocessor that achieves its power from genetic search. XCHANGE
uses a genetic string to directly represent the stop assignments of each route. The effect of the
genetic recombinations is to make simple local exchanges to the relative positions of the stops
within and among the routes.

2.1 Modular Neural Network System

The modular neural network system that we employ is illustrated in Figure 1. This component
operates at a meta-level, selecting the underlying heuristic algorithms and the best parameters to
set for the problem at hand.

Artificial Neural Networks draw inspiration from the organization and architecture of human
brains as they are presently understood. The paradigm involves the simultaneous examination of
numerous hypotheses, and the processing of data in a distributed, concurrent fashion. The
interconnections, junction points and weights associated with the interconnections comprise a
knowledge base. Neural networks learn by being trained with a large number of instances of the S
problems that they are intended to address, eventually "learning" the solutions to the training
problems. When a new problem is presented to the network, propagation through the network
structure is governed by similarity with the problems that were used in training, and an
"intelligent" solution is thus obtained through analogy. Because of this activity, artificial neural
networks have emerged as a primary artificial intelligence technique for representing a
computer-based associative memory [Arbib, 1987].

In our routing system, the basic job of the neural network system is to accept an instance of the
routing problem as input, analyze the problem, then provide a collection of parameter settings as
output. This is essentially a pattern classification task, a the type of problem solving for which
neural networks are well suited [Rumelhart, Hinton and Williams, 1986]. The architecture shown
is one that we have developed and used quite successfully for pattern classification in large and
complex domains. The mechanism relies on condensation of information through the use of two
feature extraction networks that have a "fan-in fan-out" topology (Shown on the left in Figure 1).
The idea is to compress the offered data to fundamental features before attempting to classify the
problem. On the input side, the raw routing problem data is represented as frequency class
vectors for the statistical distributions of geographical locations of the stops, locations of
vehicles, and the angles among the locations. These descriptors represent the problem data in a S
way that is invarient under rotations and scalings. This is done because neural networks are
well-known to have difficulty recognizing rotated and/or scaled versions of a pattern. In our
experiemntal work conducted thus far, we use 10 frequency classes for each descriptor, yielding
an input vector of 30 units. For a 200 stop problem, Figure 2 illustrates the frequency classes for
the first descriptor, distance from the depot. The proportions of the stops within each of the
bands provides the first 10 units of the input vector. Note that distance clustering relative to the •
depot is captured by this descriptor, and rotated versions of the same problem would provide
precisely the same input vector, which is the effect we seek. The next 10 units are frequency
classes for angular dispersion between stops. Thus, the first two descriptors strongly capture
clustering of the data in a summary way, known to be a critical factor in vehicle routing
parameter setting [Nygard, Kadaba and Juell, 1990]. The final descriptor is relative distance
within the bands, providing a fine discrimination capability that may be needed for some
problems. Note that even relatively large problems can be readily "pre-processed" into a 30-unit
vector of relevant information for the neural networks in this way. This 30-unit problem data
vector is compressed into a small vector at the center of the feature extraction neural network.

-3-
0



This is accomplished by setting the output layer of the neural network to values that are identical
to the input layer, essentially letting the network self-organize the information during training. A
similar network operates on the performance (output) side of the system, seeking a condensed
representation of appropriate parameter settings.

Identifying a successful representation of a parameter set as a bit string that can be generated by
the neural networks and serve as an artificial chromosome is a key issue in the approach. The
control parameters for the VRP are seed-point coordinate locations [12]. We model each vehicle
tour with a location called a seed, with the vehicle conceptually traveling from the depot to the
seed and back. The seed-points represent a nominal direction and distance from the depot that
the vehicle travels. We use binary bit strings to encode the seed-points as shown in Figure 3.
The number of seed points is equal to the number of vehicles available. The example string
shown below represents three seed-points, each with an x and y coordinate, shown in both binary
and decimal. The control parameters S I, Sy , S,2 .... SAV, SytN represent the N seed-points. The
parameters are constrained to an interval of the form ai < SN < bi where ai is 0 and bi is 1023.
Each seed-point is identified by an x-coordinate and a y-coordinate expressed in a 10-bit binary
string, allowing representation of the integers 0 to 1023 inclusive. The delivery locations for the
actual problem are scaled to a 1024 X 1024 grid with only integer positions possible. Although
the GA operates at the fine-grained resolution of the 1024 X 1024 grid, the neural network system
operates at the coarser-grained resolution of the 5 X 5 grid illustrated in the Figure. The resultant
25 grid locations are represented as a vector of zeroes and ones, indicating the presence or
absence of a seed point. Figure 3 illustrates the encoding of an example.

Finally, as shown on the far right of Figure 1, a generalization network operates with input and
output layers extracted from the centers of the two feature extraction networks. With this
architecture, the generalization network uses the summarized essence" of the problem on the
input side, and the summarized "essence" of the mathematical solution approach on the output
side.

During actual operation with the trained network system on a new problem, the generalization net
must provide detailed recommendations for parameter settings. This is accomplished by feeding
the summarized output settings into a reconstruction network that is comprised of precisely the
bottom half of the performance feature extraction network. The reconstruction network is
illustrated with dotted lines on the far right in Figure 1. This is significant departure from the
standard approach in which new problems are processed with precisely the same generalization
net used in training. We have experimented with many single network configurations of layers,
connectedness, and units per layer for this problem. In classification accuracy in identifying the
best heuristic, we have clearly established that .he modular system is vastly superior to single
netowrk topologies [Nygard and Kadaba, 1990]. The approach parallels the following steps that a
human expert might ust in reasoning about the solution approach to a new problem:

Step 1. Represent and view the data in such a way that recognizable and meaningful
patterns are identifiable (analogous to the frequency classes chosen).

Step 2. Identify the essential global features of the problem (analogous to feature
extraction on the input side).

Step 3. Use the global features identified in step 2 to identify key global features of
promising approaches to the problem. (analogous to feature extraction on the output
side).

Step 4. Pursue the selected solution approach in detail, setting values for the

parameters that govern the solution process.

Step 4 is initialized by the modular neural networks, but extends naturally into a genetic search,
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described in the next section.

All training was conducted on an IBM class 3090 supercomputer. The training set consisted of
sets of sample problems that the genetic search was applied to with a random start and run until •
no further improvement was possible. After training, the weights were downloaded to a SUN
workstation computer for test runs on previously unseen problems. Overall, the neural network
system expedited convergence of the method by about a factor of 3.
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2.2 Genetic Search

Genetic search algorithms are heuristic solvers that proceed in a manner inspired by biological
genetics. The basic concepts of genetic algorithms were primarily developed by Holland [75].
The book of [Goldberg, 1989] is a good survey of adaptive genetic search. A pseudcode
representation of a genetic algorithm is shown in Figure 4.

Generation <- 0;
Initialize M(Gen:ration);
Evaluate M(Generation);
LOOP (until termination condition)

Generation <- Generation + 1;
Select M(Generation) from M(Generation-1);
Crossover M(Generation);
Mutate M(Generation);
Evaluate M(Generation);

LOOP END

Figure 4. Pseudocode for a genetic algorithm

In this study, a modification of the GENESIS code developed by John Grefenstette of the Naval
Research Laboratories is used for all of the computations [Grefenstette, 87]. GENESIS was
chosen because source code written in C is available and it is well-regarded by genetic algorithm
researchers. The genetic algorithm (GA) is an iterative procedure that maintains a population of P
candidate solutions over many simulated generations. The population members are bit strings
that serve as artificial chromosomes. The chromosomes are fixed length strings with a finite
number of binary values (or alleles) at each position (or locus). The initial population M(0)
consists of P members whc . jits are chosen by the neural network and at random. Each
chromosome is evaluated by a mathematical model, resulting in a fitness or cost value. The
fitness value determines the relative ability of a chromosome to survive and produce offspring in
the next generation.

The selection operation, Select M(Generation), of a chromosome, Cj, where i = I to P, into the
next generation is dependent on its fitness value fi relative to the fitness value of other
chromosomes in the population. At (Generation - 1) the relative fitness of the chromosome, C,, is

calculated as follows: Relative Fitness of Ci = f' In carrying out the selection process, we treat

the relative fitness value as probabilities, and calculate the expected number of copies of each
chromosome, Ci, chosen for producing offspring to survive into the next generation as follows:

Expected number of copies of Ci = Relative Fitness of Ci * P

l-oi example, if the expected number of copies of Ci is 0.2 and P is 100, then 20 identical copies
of Ci will survive for possible reprodution into the next generation. The expected values are
processed in descending order until the population size is reached. After the selection procedure,
population M(Generation + 1) contains exact duplicates of the selected structures from
population M(Generation). For searching other points in the search space, variation is introduced
into the population chromosomes by using crossover and mutation genetic operators. Crossover •
is the most important genetic recombination operator. After the selection process, a randomly
selected proportion of the chromosomes, called the crossover ratio (C_Rate), undergoes a two
point crossover operation and produces offspring for the next generation. Crossover exchanges
alleles among adjacent pairs of the first (CRate * Population Size) chromosomes in the new
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population. The remaining proportion of the selected chromosomes are carried over without
change to avoid massive disruption of the population. A two point crossover proceeds in -wo
steps. First, two adjacent parent chromosomes are chosen. Second "he two chromosomes
exchange chromosome bits as follows: two integer bit locations, say p and q, are chosen
randomly, where p and q lie within the range of the chromosome length and p is greater than q.
Two new offspring are formed from the parent chromosomes by exchanging all bits that lie
between p and q

Selection and crossover effectively search the space exploring and exploiting information present
in population chromosomes by selecting and recombining primarily those offspring that have
high fitness values. These two processes eventually produce a population of chromosomes with
high performance characteristics. The Mutatation operator, M(Generation), is a secondary
operator that prevents premature loss of important information by randomly mutating bits within
a chromosome. Mutation proceeds by selecting a proportion of the chromosomes, defined by the
mutation ratio (MRate), and converting the chromosome bits to their complementary value.
Approximately (MRate * Population Size * Chromosome Length) mutations occur per generation.
GA's are ada:tive in the sense that candidate offspring chromosomes generated at each
generation reflect and exploit information obtained by chromosomes of earlier generations. The
adaptiveness is achieved by exploiting similarities present in the coding of the chromosomes. The
termination criteria of the genetic algorithm is absence of improvement within a prespecified
number of evaluations or when a maximum number of generations is reached.

Methods of imp-oving the performance and efficiency of GA's are of significant importance. The
primary parameters of a standard GA are population size, crossover and mutation rates, and
number of crossover points. These parameters have a significant impact on performance [17, 7,
11]. Adaptive selection methods [1] and reproductive evaluation techniques have also been
shown to speed up GA searches. Genetic starches are generally compute intensive procedures
that require the evaluation of many candidate solutions to a given problem. In the application area
we study (routing and scheduling), the genetic algorithm sets parameters for a mathematical
heuristic. To reduce the computational overhead of this approach, we developed a mechanism for
improving the performance of the genetic search. We employ a method of using multiple sharing
evaluation functions, permitting the parallel investigation of multiple peaks in the search space.

2.2.1 Fitness Evaluation

We use several "cluster first route second" heuristic techniques to evaluate fitness in the GA. The
first phase, clustering, determines the sets of stops to be served by each vehicle. The second
phase, routing, sequences the stops assigned to each vehicle.

To handle the first phase, we developed and experimented with four methods of determining the
clusters. The first two methods, Fast Assignment Approaches FAAI and FAA2, are new
algorithms that are relatively fast and well suited for the genetic search. The third method,
FGAA, is a modified version of the generalized assignment methot developed by Fisher and
Jaikumar [4]. COMBO, the fourth method, employs the other three in combination, with each
driven with the same set of parameters.

In the second phase, a Traveling Salesman Problem (TSP) solver is used for sequencing. In the
TSP, a tour begins at a home location, visits each stop on a list exacdy once, then retums to the
location of origin. The objective is to find the orde, in which the stops are visited so that the total
distance traveled is as small as possible. Tour construction algorithms are a prominent and
successful class of mathematical heuristic procedures for quickly solving large-scale instances of
the TSP These methods construct tours incrementally, starting with an initial subtour, then
expanding it by repeatedly applying rules that select unvisited stops and insert them into the tour.
In this work, we utilize only the CCAO tour construction algorithm shown by Golden and
Stewart to consistently achieve high performance with reasonable CPU times [8].
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In summary, evaluation of a population member proceeds as shown in Figure 5.

Step 1: Input the seed point coordinates represented by
the chromosome of the population member

Step 2: Clustering Phase. Use FAAI,FAA2 FGAA or COMBO
to assign stops to vehicles

Stage 3: Sequencing phase. Use the TSP heuristic to order
the stop points in each cluster

Step 4: Calculate total tour length for each cluster, sum over all clusters,
and return the total as the fitness value

Figure 5. Evaluation of a population member.

All the clustering methods have merit, in the sense that each induces high performance on at least
some example problems. Each of the clustering methods is described below in turn.

Clustering Method FAA1: In this method, one seed-point is active at a time. The nearest stop is
assigned to the active seed-point, if doing so does not violate the corresponding capacity
constraint. For each stop assigned, a weighted distance factor is added to the active seed-point.
The seed-point with the minimum weighted distance is made active for the next assignment. This
process continues until all the stop points are assigned to some seed-point.

Clustering Method FAA2: In the second method, all the seed points are eligible to receive the
next stop point assignment. in At each step, the stop point with the minimum distance to any of
the seed point is selected and assigned to that seed point. The process continues iteratively until
all the clusters are formed.

Clustering Method FGAA: In FGAA, a generalized assignment optimization problem is solved
to assign the stops to the seed-points. The basic idea is due to Fisher and Jaikumar [4], and is
widely held to be the most consistent high performance approach to the generic vehicle routing
problem. Using genetic search as an intelligent shell to find high performance seed point values
significantly increases the ability of the generalized assignment method to calculate high
performance clusters. Given a set of seed points, the following generalized assignment problem is
solved to assign stops to vehicles.

-11-



minimize . ;CkJ XkJ

subject to:

(1) J~i rk xkJ < bk for all k c K

(2) k 4CXkJ = l forall jeJ

xkq =O or 1 for all ke K,jEJ.

The value of the decision variable, xkj, is interpreted as follows:

fI if stop j is assigned to vehicle k
XkJ =0 otherwise

Constraint set (2) forces each stop to be assigned to exactly one vehicle. Constraint set (1) limits

the assignments by vehicle capacity.

With this model, the cost parameters are defined in terms of distances D as follows:

ckj = D (depot ,stop j) + D (stop j ,seed k) - D (seed k ,depot).

This definition of cki provides a linear model of the contributions of individual stops to the
travelling salesman tours. The clusters produced in Clustering Step are fundamentally dependent
on the locations of the seed points, and provided much of the inspiration to intelligently search
for high performance seed points.

COMBO Clustering Method: Many optimization problems require the investigation of multiple
local optimas. Here a concept inspired by sharing functions (Goldberg 1987) is used to
investigate the formation of stable subpopulations of different strings in the GA, thereby
permitting the parallel search of many peaks. This method uses the string recommended by the
GA on all three methods (FAA 1,FAA2,FGAA) and the function with the best performance value
is selected to return the fitness value for that particular string. The three methods
(FAA 1,FAA2,FGAA) all use the same string, and due to the competition between widely
disparate points in the search space, help maintain a diverse population which searches many
peaks in parallel. This multimodal optimization method also helps in avoiding premature
convergenc; due to local optimas.

2.2.2 Convergence characteristics

Figure 6 and Table I collectively illustrate the mechanics of a crossover genetic operator. Under
2-point genetic crossover with random crossover point selection, suppose that C11 and Cl 2 are
the crossover points in Parent I and C 21 and C2,are the crossover points in Parent 2. When the
genetic material (bit strings) between the crossover points exchanged, two offspring strngs are
generated. The crossover operator results in two candidate seed-point locations, with seed-point 3
not being effected by the crossover operation, but seed-point ; and 2 moved to a new location.
These new locations of the seed-points result in altered clusters, which in turn results in a altered
fitness measure (total distance). After sequencing the stop locations in each of the candidate
clusters with the TSP solver, the results are returned to the GA.
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As generations evolve, seed-points tend to be concentrated in tight geographical areas due to the
survival of the fittest mechanism of the GA. This is illustrated in Figure 7 for a typical example
problem. In part a of the Figure, seed point locations for the last 50 of 1000 trials are plotted with
distinct symbols for each seed. In part b, all 1000 trials are plotted. A trial is a single execution •
of the evaluation function on a candidate control parameter. From the plots it readily seen that
the seed locations settle into high performance geographical areas.

The three performance curves on the graph shown in Figure 8 illustrates the the convergence of
the search process. The performance measure is total distance traveled by the fleet, so small
values are desirable. The top curve indicates the worst performance of the evaluation function as
function of generations. The bottom curve indicates the best performance in each generation. The
middle curve is the plot of the average performance of the evaluation function. The decreasing
trend in the curves illustrates the survival of the fittest candidates in the population, and indicates
that the GA is doing much better than a random search in the control parameter search space.

Table 2 presents empirical work that illustrates the parallel nature of the search and S
characteristics of the multiple sharing evaluation functions used in the COMBO clustering
method. The illustration is for a typical four vehicle problem. A row shown in the Table
corresponds to an evaluation function (FAA1, FAA2, or FGAA) evaluating a seed-point
parameter which produces a performance value better than the best found up to that point in time.
Reading from the top, the FAA1 method produces the best solution initially (row 1). The next
seven improving solutions are found by FAA2 (rows 2 through 8). The seed-points that produce •
these solution are the result of searches centered around a few relatively high performance
locations. The ninth improvement is found at generation 14 by FAA 1. The coordinate value
reveal that this seed-point location is very close to the one FAA2 was using to improve the
solution performance, as shown in example 9. The FGAA method, which had not generated a
best solution among the first 10, produces an improved solution in generation 17 using seed-
points very similar to a pattern first identified in generation 2. Also note that the seed-points in
example 11 are in a completely different area of the search space. This illustrates the parallel
search of the multimodal response surface occurring in the search. Thus, each of the evaluation
functions is able to take advantage of progress made by the other functions at any generation.

-13-
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Table 2. Parallel nature of the adaptive search. Each of the three methods is able to exploit promising seed-points
discovered by the other methods.

Ex S,1 SyI S 2  S, 2  S., S3, S, 4  S, 4  Perf Method Generation

1 572 61 959 623 742 43 125 463 12373 FAAI 1

2 812 824 316 528 981 405 181 816 12082 FAA2 2 9
3 759 851 85 371 49 136 968 279 11880 FAA2 2
4 580 928 105 396 963 818 82 275 11685 FAA2 2
5 466 716 805 75 114 769 494 873 11518 FAA2 2

6 279 488 865 65 51 747 944 660 11132 FAA2 2
7 232 791 865 79 901 672 197 720 10958 FAA2 2
8 757 329 110 833 55 136 968 663 10761 FAA2 7
9 714 182 90 841 52 141 976 652 10732 FAAI 14
10 714 342 105 833 55 128 1006 648 10606 FAA2 16
11 232 151 873 185 53 795 958 464 10490 FGAA 17
12 232 150 873 185 54 868 958 464 10450 FGAA 30
13 773 181 150 185 55 868 945 431 10394 FGAA 32
14 688 197 118 185 55 868 977 524 10373 FGAA 35
15 693 169 83 838 72 151 943 908 10299 FAA2 38
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2.2.3. A Genetic Search Post-Processor

In addition to the 4 clustering methods and the CCAO travelling salesman problem solver, we
also experimented with a local improvement procedure designed to be applied as a post-
processor. Called XCHANGE, the method is quite simple, but achieves significant results
through genetic search. XCHANGE uses a chromosome that directly represents the assignments
of the stops to vehicles. Crossover operations and a very small mutation rate make local changes
to the stop/vehicle assignments. Each local change is accepted only if the modification would not
violate the capacity constraints of the vehicles involved. The procedure continues for a preset
number of trials.

Figure 9 illustrates the artificial chromosome used by XCHANGE. Each stop-point is mapped to
a cluster number which is represented in binary. In this way, a 2-bit binary string can handle up to
four vehicles indexed by 0 through 3 inclusive. Similarly, a 3-bit string could handle up to 8
vehicles. Standard 2-point crossover is employed. The crossover action leaves some vehicle
clusters unaltered and exchanges or offloads stops in others.

2.2.4 Experimental Results

Five variations of the overall methodology of using genetic search for parameter setting were
empirically evaluated on a large number of test problems. The variations correspond to each of
the three rudimentary clustering methods (FAA 1, FAA2, and FGAA), the COMBO clustering
method, and the COMBO method followed by the genetic postprocessor, called XCHANGE in
the ensuing. In addition, each test problem was was also solved with each of 5 algorithms that
represent the state-of-the-art from the literature.

The five algorithms from the literature are:

* Clarke-Wright, a venerable heuristic algorithm capable of producing fast solutions to
large scale problems with multiple vehicles and an objective of minimizing total
distance [3].

* FISHERI, the original generalized assignment heuristic of Fisher and Jaikumar [4]
that is well known to produce high-quality solutions to small and medium size
problems.

* FISHER2, a heuristic similar to FISHERI that uses a seed setting strategy that
employs a look-ahead feature [13].

* NYGARD-WALKER, a heuristic that uses spacefilling curves and Lagrangian
relaxation to obtain solutions to very large-scale multiple vehicle problems [1 5].

* LFMO, a vehicle routing solver based on Spanning Trees and Branch Exchanges
[14].

A random problem generator was used to generate sets of fully dense problems with 100, 200 and
1000 stop points generated in a square, 1023 miles on a side. A vehicle utilization factor of 95 %
was used in all problems. The performance measure for a candidate solution is the total distance
traveled by all the vehicles. A mutation rate of .001 was used in all cases, meaning that each bit
in the representation of each population member is changed (from 0 to I or vice versa) with a
probability of .001. All experiments were set for 1000 trails (generated feasible solutions). The
CCAO selection/insertion heuristic of Golden and Stewart [8] was used to calculate the traveling
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salesman tours. The best solution found in the 1000 trials was retained. A great deal of
experimental work was carried out on a network of SUN 3 workstation computers. Here we
discuss a set of 25 test problems, all fully dense with 200 stop points, and 4 vehicles with a
utilization factor of 95 %. Each of the 5 genetic-based methods was run for 1000 trials. All of the
GA parameters (crossover rate, mutation rate, population size and string length) were kept
constant through out the experiments. Figure 9 illustrates the advantage that the method that uses
multiple sharing evaluation functions (COMBO method) has over the methods with individual
evaluation functions. By definition, the COMBO strictly dominates each of the alternative
methods. Note, however, that the three individual methods do not improve the search after about
1000 trials, but the performance curve of the COMBO method continues to drop through
subsequent trials. This result is consistent over all 25 problems tested.

Table 3 provides the final results for all 10 available methods on all 25 problems. The values
shown in the table are the total miles traveled using the four vehicles. The XCHANGE method of
the table applies the post-processor module to the best assignment achieved from the COMBO
method as a initial starting point for the genetic search. The results show that there is a strong
tendency for the methods that employ the genetic search to outperform the 5 methods from the
literature. In addition, the COMBO method consistently dominates each genetic search
controlled heuristic in isolation, and XCHANGE significantly improves the result even more.
The percentage decrease in total distance travelled over the range of the methods tested is
commonly in the 5% to 10% range, a result quite remarkable in light of the long history of some
of the methods represented.

The Friedman test was used to statistically test whether the different heuristic algorithms have
equal mean performance measures. This test is a nonparametric counterpart of the parametric
two-way analysis of variance (ANOVA) test, and applies if the hypothesis that the data comes
from a normal density is rejected. The test can be applied to 3 or more algorithms at once and
may be used if only rank data are available. The data are set in a randomized block design with n
problems each containing k algorithms. The measurements are ranked in each problem over the
algorithm. After doing this for each problem, the ranks were summed for each algorithm. In the
case of ties, average ranks were used. The null hypothesis is that all the algorithms (three or
more) have equal mean costs and the alternative hypothesis is that all the algorithms (three or
more) do not have equal mean costs. Using the multiple comparison test, the conclusion is the
XCHANGE algorithm may be regarded as superior to the COMBO algorithm, COMBO is
superior to FAA2, and FAA2 is superior to the FGAA algorithm.

To illustrate the low memory requirements of the genetic search methods large routing problems,
test problems were generated with 1000 stop points and 4 vehicles were used with a utilization
factor of 90%. The genetic algorithm requires little memory and achieves good solutions within
seconds, but can require substantial computer time (perhaps several hours) to achieve top quality
solutions. However, the genetic algorithm lends itself naturally to asynchronous parallelization
on a network of workstation computers. For 1000 stop problems, the only method from the
literature that could run with the 8 megabytes of memory is the Clarke-Wright method, and it
requires about 6 megabytes, even though extremely efficient data structures were used [13]. The
COMBO method requires about I megabyte of memory for such problems. In many of the
experiments, we used a parallelizing scheme in which as many as 6 asynchronous workstations
were used to solve individual problems. Essentially, the fitness function evaluations were
allocated to separate processors as new parameters became available. The NGO-VRP
methodology outperformed the Clarke- Wright by nearly 10% in reduced mileage over the set of
problems tested. Thus, the new methods offers geneuinely large scale capablilities that the best
of the competing methods cannot approach. The low memory requirements of the genetic search

I methods sets the stage for networks of microcomputers or MIMD computers to be brought to bear
on very large routing and scheduling problems.
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Table 3. Illustration of the performance measures of the various models used to benchmark NGO-VRP. Values

shown are the total miles traveled using four vehicles. Overall, previously existing methods are consistently outper-

formed.

200 Node - 4 Vehlde - 95% Ullzato_
PROBLEMS CLRK FISHERI FISHER2 NYWK I LFMO FAAI FAA2 FGAA COMBO XCHANGE

p1.1 11501 10887 11123 11025 11340 10755 1023 10656 10670 10600
pl.2 11522 11251 10943 11413 11003 10532 10273 10230 10215 10163
p1.3 11345 10121 10967 11150 1034 10414 10611 10732 10252 102418
pI4 23174 10976 10941 12046 10636 10423 10182 10461 10212 10129
p.5 10950 11307 10663 10892 10697 10726 10233 10593 10145 10021
p.6 11807 11306 12357 10756 11285 11247 10931 11121 10629 10629
pl.7 10936 10792 10796 10643 10614 10447 10290 10731 10299 10249
pl. 10596 10716 10751 10172 10356 10098 10101 10178 9994 9905
p1.9 11542 10616 11234 11525 10825 10267 10301 10231 9904 9904

p1.1O 10003 10829 10679 10056 10532 9534 9472 9950 9472 9472
p1.11 11023 10621 11014 10845 10509 10350 10176 10419 10130 10125
pl.12 11501 10341 10627 12053 10602 10513 10440 10670 10354 10313
p1.13 11813 11211 11253 11028 11127 10697 10518 10916 10491 10498
p1.14 11254 10961 11113 11763 11425 10501 10551 11047 10521 10519
pl.15 11117 10441 10567 10982 10950 10572 10175 10660 10100 10100
p1.16 11051 11363 11363 11117 11370 10810 10596 10902 10184 30790
pl.17 11665 11250 11250 10968 10934 10520 10375 10670 10261 10200
p1.18 11114 10119 10190 10481 10773 9986 9900 9110 9549 9475
pl.19 11448 10643 11002 10360 10649 10597 10129 10472 10207 10135
p1.20 12531 10615 11063 11146 11616 10715 106601 10754 10755 , 10755
pl.21 11113 10931 11124 11060 10461 10406 10539 10225 10225 1022
p1.22 10963 10516 10494 10174 10174 9900 9713J 9713 9765 9765
pi.23 11212 10631 10776 11237 10632 10742 10599 10619 10553 10551
pi.24 11771 10967 11216 11412 11481 10952 10618 10675 10491 10491
p1.25 11570 10636 10595 11116 10766 10535 10440 10585 10351 10358
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FIgure 9. Convergence rates of the methods that were tested. The COMBO method continues to show improve-
ment after the alternatives have stabalized.
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3. The NGO-VRPTW Procedure

The VRPTW involves routing a fleet of vehicles, of limited capacity and travel time, from a
central depot to a set of geographically dispersed customers with known demands within
specified time windows. The time windows are two-sided meaning a customer must be serviced
at or after its earliest time and before its latest time. If a vehicle reaches a customer before the
earliest time it results in idle or waiting time. A vehicle that reaches a customer after the latest
time is tardy. A service time is also associated in servicing each customer. The route cost of a
vehicle is the total of the traveling time (proportional to the distance), waiting time and service
time taken to visit a set of customers.

The VRPTW arises in a wide array of practical decision making problems. Application includes
retail distribution, school bus routing, mail and newspaper delivery, municipal waste collection,
fucr oil delivery, dial-a-ride service, airline and railway fleet routing and scheduling. Efficient
routing and scheduling of vehicles can save government and industry many millions of dollars a
year. Solomon[84] provides an excellent survey on vehicle routing with time windows.

Savelsbergh[85] has shown that finding a feasible solution for a VRPTW using a fixed fleet size
is NP-hard. Due to the intrinsic difficulty of the problem, search methods based upon heuristics
are most promising for solving practical size problems [Baker, 86] [Solomon, 87][Thompson,
881.

The NGO-VRPTW is an instantiation of the overall approach as it applies to the VRPTW. The
genetic search potion and the optimization portion have been developed, coded and empirically
evaluated. The genetic search begins with a random start. When the neural network is employed
in initialization, we expect that convergence of the process will be on the order of 3 times as fast
as the present procedure.

The genetic search proceeds globally, assigning stops to vehicles by a process we call genetic
sectoring (GENSECT). Once stops are assigned to vehicles a local route optimization n.cdule
(LOCOPT) is invoked. The GENSECT module adaptively searches for sector rays that panition
the geographical area into sectors or clusters served by each vehicle. The GENSECT solution
ensures that each vehicle route begins and ends at the depot and that every customer is serviced
by one vehicle. The LOCOPT module operates by removing tardy customers and reducing
infeasibilities in capacity and travel time of vehicles. The synergy between a global adaptive
heuristic search combined with local optimization gives solutions superior to those of competing
heuristic algorithms. On a standard set of 56 VRPTW problems obtained from the literature,
NGO-VRPTW did better than the alternate methods on 41 of them, with an average reduction of
3.9% in fleet size and 4.4% in distance traveled. NGO-VRPTW required an average of 127 cpu
seconds to solve a problem on the SOLBOURNE 5/802 computer. In addition to performance
and efficiency, the NGO-VRPTW system can be used to evaluate the tradeoff between fleet size,
vehicle capacity, distance and route time by parametrically varying the values.

3.1. The GENSECT and LOCOPT Modules

NGO-VRPT"W consists of two distinct modules, GENSECT, a global vehicle routing module and
LOCOPT, a local route optimization module. The GENSECT module assigns the customers into
vehicle sectors or clusters. The clustering ideas in GENSECT are inspired by the work of Fisher
and Jaikumar[81]. A genetic algorithm, GENESIS [Grefenstette, 87], is used to find a set of
sector rays to assign customers to clusters. Once the clusters are formed, the vehicles are routed
to serve the customers within a cluster using a cost function that minimizes the total route cost.
The vehicle routes from the GENSECT module could consist of tardy customers and
infeasibilities in capacity and travel time of vehicles. The LOCOPT module uses local
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optimization procedures to move or exchange customers between clusters to remove the tardy
customers and vehicle infeasibilities. The iteration between GENSECT and LOCOPT can be
performed any number of times. We have found that two iterations are sufficient to attain
relatively good solutions.

3. 1.1 The GENSECT Module

The GENSECT module initially divides the customers into sectors or clusters using a sweep
algorithm [Gillet and Miller, 74] with sector rays as the points of division. Once the clusters are
formed, the vehicles are routed to serve the customers while minimizing the route cost calculated
by the route cost function.

The cost function gives high priority to reducing tardy customers and penalizes vehicles not
within their capacity and travel time in order to obtain a feasible solution. The distance and route
time are factored into the cost function as they indirectly affect time violation constraints. The
total route cost is the sum total of each vehicles route cost.

During the genetic sectoring process, a set of seed angles are represented in a chromosome with
each seed angle occupying 3 bits of the chromosome. Figures 10 and 11 show the represenatation
and the results of a 2-point crossover operaton. The binary representation of each seed angle, B.,
is converted to the integer format using the following equation:

Si- ( M -Anle ) + INT (B1 ) * C, where C = 1.5 Max-Angle is the maximum angle value of

the customers in the problem and INT is a function that converts a binary string to an integer
value. The fitness value of a chromosome is the total route cost of the clusters formed from the
set of seed angles in the chromosome.

Once the clusters are formed, the routing of a cluster begins with vehicle from the depot
randomly selecting a customer from the cluster as the first to be visited. Assume that the depot is
denoted by 0 and the first customer selected to be served is 3, giving an initial route 0-3. If the
next customer to be served is 5, the customer can be inserted between the depot, 0, and customer
3, to form the route 0-5-3 or after customer 3 to form the route 0-3-5. The insertion location of
customer 5 into the route 0-3 that yields the lowest route cost, using cost function (3.2), will be
selected as the next insertion point. For a route that has L customers, to insert the next customer,
the cost of L+1 locations are calculated and the location with the lowest route cost is chosen as
the next insertion point.

3.1.2 The LOCOPT Module

Though the GENSECT module is effective in searching the entire search space for the set of seed
angles with the lowest total route cost, it could still have tardy customers or vehicles that exceed
vehicle capacity or travel time. This inherent disadvantage can be removed by switching
customers between clusters by applying local optimization procedures to the solution from
GENSECT. The customer switching method is similar to the cyclic transfer local optimization
method of Thompson [88], based on moving customers between clusters to minimize the total
route cost. The iteration between GENSECT and LOCOPT can be executed any number of
times, but we have found that 2 iterations are sufficient to attain good solutions.

3.2 Computational Results

NGO-VRPTW was run on a set of 56 problems, in six data sets, developed by Solomon(83]. The
problems were also solved by Thomson[88]. NGO-VRPTW did better than the two alternatives
on 41 of the 56 problems with an average reduction of 3.9% in fleet size and 4.4% in distance
traveled by the vehicles. Each problem took an average of 127 cpu seconds to be solved on a
SOLBOURNE 5/802 machine. Each of the problems in these data sets has 100 customers and the
fleet size to service them varies from 2 to 21 vehicles. They incorporate many distinguishing
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features of vehicle routing with two sided time windows. The problems vary in fleet size, vehicle
capacity, travel time of vchicles, spatial and temporal distribution of customers, time window
density (the number of demands with time windows), time window width and customer service
times. The geographical distribution of the customers consists of randomly generated customers, S
in data sets RI and R2, clustered customers, in data sets C1 and C2, and semi-clustered
customers, in data sets RCI and RC2. The problem sets R1, C1 and RCI have small vehicle
capacities and travel time compared to those of R2, C2 and RC2. Solutions to each problem were
obtained by Solomon[87] and Thompson[88]. Solomon tested a number of algorithms and
heuristics and reported that the overall best performance was obtained using the "I I" insertion
procedure. Solomon[83] reports the best solutions using the "I1" insertion method with eight
different combinations of parameters and initialization criteria. Thompson's[88] solutions use
local optimization procedures to improve feasible solutions obtained using the "I 1" insertion
method using the best of eight different combinations of parameters and two different
initialization criteria.

For each problem, the results of NGO-VRPTW were the best of two solutions generated by two S
different initial placement of customers. In one, initial placement the customers were sorted in
ascending order of their angles to distribute the customers based upon their geographical
locations In the other, the customer angles were left unsorted. The solutions obtained by NGO-
VRPT were compared against those of Solomon, denoted by Method 1, and Thompson,
denoted by Method 2, in Table 1. In the tables, each problem number, PROB, shows the percent
differences in fleet size(NV%) and distance(DIST%) of the NGO-VRPTW solution against the S
other two methods. Positive values indicate improvement over the other two methods. The
reduction of fleet size and distance obtained by NGO-VIT .' vere comparatively larger for
problem sets RI, R2, RCI and RC2 than for problem .ts C1 anid C2. Due to the close
geographical proximity of customers in p-Iblt;,ns sets Cl and C2, the genetic sectoring process
converges upon a feasible solution relatively quickly.

For randomly located customers the time violations qn-l in::asibilities are greater during the
genetic sectoring process, leading to a more rigorous adaptive search and better solutions.

The adaptive nature of the genetic algorithms are exploited by NGO-VRPTW to attain solutions
that are superior to those of competing methods. This methodology is potentially useful for
solving VRPTW's in real time for dynamically changing customer demands. 5
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Table 1. Comparison of average % difference in fleet size and distance
between the other two
methods and NGO-VRPTW over all data sets.

METHOD I METHOD 2
PROB NV% DIST% NV% DIST%

Ri 3.8 9.0 2.1 3.3
Cl 0.0 4.7 0.0 2.0

RCI 7.0 6.9 3.0 3.4
R2 2.2 19.5 -4.5 10.9
C2 1.2 -8.8 0.0 -16.3

RC2 11.9 15.9 7.1 15.9

Legend:

METHOD 1 Data from Solomon's method [Solomon, 1983]
METHOD 2 Data from Thompson's method [Thompson, 1989]
PROB Problem set
NV Percent average of fleet size
DIST Percent average of total distance traveled
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Figure 10. Representation used for seed angles in the time-constrained problem. Each angle is a variation from a
normalized position.
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Figure 11. Example offspring after 2-point crossover is performed on the parents in Figure 10. Only the angles at
the crossover points are modified, propagating high performance structures in the remainder.
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4.0 The Remote Autonomous Vehicle System

Preliminary steps have been taken to apply the methodology to a problem of fundamental
military importance, the routing and mission planning of autonomous vehicles. A primary
example is the Tomahawk cruise missile. Such missiles fly pre-programming routes and have the
capability of matching terrain data obtained by sensors with representations of the terrain stored
in an onboard computer. The work described here has been primarily supported by the Naval
Surface Warfare Center, Dahlgren, Va, but the basic research activities conducted for DARPA
under the present project contribute to progress on this application. We refer to the system under
development as the adaptive mission operation scheduler (AVOS). A primary goal of the
research is to provide an adaptive capability, so that an enroute missile would have the capability
of altering course in response to changes in information, such as a new target location or threat
region. The methodology under investigation is ideal for this type of application, because of the
inherently adaptive nature of the search processes in use. We address first the fundamental
problem of determining good trajectories for a remote autonomous vehicle (RAV) to follow from
a launch point to a destination point through an hostile environment. The RAV must operate
under implicit and explicit constraints. The implicit constraints of the RAV concern fuel
capacity, turning radius and other maneuvering limitations. External constraints concern the need
to fly over navigation points to re-initialize the guidance systems, reach targets within a time-
window, etc. In our approach, we treat reaching a target as the primary goal, and avoiding hostile
areas as a secondary goal.

To discretize the system, we superimpose a grid upon the region through which the RAV must
fly, and restrict movement to the resolution of the grid points. In our experiments thus far, we use
a 45*50 grid. As an approximation of reality, each point on the grid has a hostility measure
between 0 and 1. These measures are abstract fuzzy set membership grades. Thus, a hostile grid 0
point of measure .8 mean that the point is associated with membership in the set of hostile grid
points with a degree of membership of .8. The values are only loosely associated with
probabilities of detection or destruction of the missile. The flow of the algorithm in the AVOS
system is depicted in Figure 12.
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Figure 12. Flow of the procedure for routing an autonomous vehicle. An interrupt with ncw information can occur
at any time.
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When the AVOS system is invoked, the launch point, target point and hostile environment
information are input into the algorithm. The neural net system is charged with calculation of the
parameters for what we call trajectory primitives, used to help initialize the population for the
genetic search. These primitives are the parameters for portions of line segments, ellipses
parabola and hyperbolic shapes that provide fundamental models for the missile trajectories. The
neural net system must extract geographical features of the hostile region as well as launch point
and target site relationships, and arrive at a rudimentary pattern for the missile to follow. This
aspect of the problem is consistent with the success of neural networks in shape recognition and
pattern classification. Our work on this portion is in preliminary stages, but already we have been
able to produce reasonable fits of several primitives to the data in several problems.

After initialization, a genetic search seeks a detailed trajectory that the missile begins following.
An interrupt can be invoked at any point after the missile is launched to change the conditions of
the environment or the location of the target. After an interrupt, the genetic algorithm is invoked
to plot a new trajectory from the current point of the missile to the target, through the new
environment, the genetic algorithm uses a the previous trajectory as a guide to adaptively plot a
new trajectory. Thus far, a simple representation designed to illustrate the adaptive capability of
the methodology is in use. In this representation, shown in Figure 13, we employ a chromosome
that is partitioned into 3-bit portions, allowing 8 distinct integers to be represented by such
groups. The 8 integers correspond to the 8 nearest neighbors in the grid, for a 2-dimensional
search. Figure 14 shows convergence of the search for a typical problem from a random start. In
the example, there is navigation point represented by a triangle, the small square is the launch •
point, and the larger square is the target. Areas of hostility at a single level are shown as dark
squares. Note that early on in the search, the solutions are being primarily rewarded for reaching
the target, with secondary importance for avoiding hostility. Ultimately, the search finds a
trajectory that flys through very little hostility, flys sufficiently close to the navigation point, and
also reaches the target. The final solution is smoothed by a b-spline to maintain adherence to
internal constraints. The length of the artificial chromosomes models the fuel limitation of the 0
missile. The type of trajectory generated is dependent on a fitness function that measures the
desirability of the trajectory. The cost function used in evaluating the fitness of the target
calculates the the difference in distance between the target and the point in the trajectory that is
closest to it, the navigation point and the point in the trajectory that distance s closest to it and the
number of hostile points through which the trajectory passes. The cost function is defined as

follows: Wd Di + W. Ni + Wt T, + AWh hi f, where:

WD - weight factor for the distance away from target.
D - difference E distance between the point E the trajectory

closest to the target and the location of the target
W - weight factor for the distance away from the

navigation point.
D)2 - difference E the distance between point e the trajectory

closest to the navigation point and the location
of the navigation point.

Wt - weight factor for the time taken reach target.
D3 - number of units required to reach target.
Wh - weight factor for hostility.
h, - presence or absence of a hostility at a grid location i.
f, - probability of hostility at point i.

In the experiments thus far,
the weight factors were set as WD = 1000, Wn = 50, Wt =50 and Wh = 50.

The AVOS system is designed to have the capability of dynamically

responding to changes in the
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environment. Figure 15 shows adaptation to a change in target location. In this illustration, the
missile was underway and near the navigation point when it was learned that the target location
was actually in the hostile region, some consideiable distance up from the old target in the
Figure. Note that the search underway was able to respond to the change, and identified a
trajectory that reaches the modified location. In other experiments, the locations of threat points
in the hostile region were modified, and also simultaneous modification of both threat region and
target location. The methodology successfully adapts to these changes. Computation is
relatively fast. The trajectories are typically generated in about 5 cpu seconds in an
SOLBOURNE 5/802. Although much remains to be done, the research shows that the approach
has potential to provide good trajectories that could be adaptive in real time.
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Figure 13. Representation as an artificial chromosome of dhe directions of turn available to the vehicle.
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Figure 14. Convergence to a high performance trajectory from a random start. The trajectory successfufly finds
both the navigation point and the target, and also minimizes exposure to threat by evading hazardous territory.
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5.0 Future Research Directions

Most research in vehicle routing and scheduling has focused on static models. However, in
practice, routing problems are extremely dynamic. Consider, for example, breakdowns within a
vehicle fleet, loads that were expected that did not materialize after a vehcle was already
underway, desirable new loads that suddenly become available, unexpected delays or
accelerations elapsed time, etc. In military applications, such as the autonomous vehicle
problem, targets may be reached by other weapons systems, threat areas can suddenly change,
sensor and satellite data can reveal new information, or mission priorities can change, all making
it desirable to dynamically reroute vehicles. In addition, sophisticated 2-way communications are
rapidly making it economical and feasible to dynamically track and control vehicles anywhere in
the world, opening new possibilities for more increasing their efficiency. The approach that we
pursue has considerable potential for addressing dynamic routing problems, because of the
inherent adaptive nature of the methodology. In addition, for mission planning purposes, many
weapons systems are employed during overlapping time frames. Our results on generic routing
problems with multiple vehicles strongly suggest that there is considerable potential to extend
these methods into systems for helping mission planning and deployment decisions make optimal
decisions in utilizing a multiplicity of smart weapons. We are also making efforts to develop
appropriate graphical user interfaces for routing models, so that the technical information
concerning routing decisons can be readily presented to human operators responsible for
dispatching decisions. This area has strong interconnections with image processing, (especially
satellite imagery), Geographical Information Systems (GIS), and general decision support
systems.
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